Under normal physiological conditions, essential amino acids (EA) are transported from mother to fetus at different rates. The mechanisms underlying these differences include the expression of several amino acid transport systems in the placenta and the regulation of EA concentrations in maternal and fetal plasma. To study the relation of EA transplacental flux to maternal plasma concentration, isotopes of EA were injected into the circulation of pregnant ewes. Measurements of concentration and molar enrichment in maternal and fetal plasma and of umbilical plasma flow were used to calculate the ratio of transplacental pulse flux to maternal concentration (clearance) for each EA. Five EA (Met, Phe, Leu, Ile, and Val) had relatively high and similar clearances and were followed, in order of decreasing clearance, by Trp, Thr, His, and Lys. The five high-clearance EA showed strong correlation (r(2) = 0.98) between the pulse flux and maternal concentration. The study suggests that five of the nine EA have similar affinity for a rate-limiting placental transport system that mediates rapid flux from mother to fetus, and that differences in transport rates within this group of EA are determined primarily by differences in maternal plasma concentration.