Camptothecin (CPT), a human topoisomerase I inhibitor, blocks DNA replication in human cancer cells. It represents a promising new class of chemotherapeutic agents with broad anti-tumor activity. However, its effect on gastric cancer cells remains unknown. We examined cell growth, apoptosis and cell cycle phase distribution in gastric cancer cells by exposing these cells to CPT for up to 72 h. Cell viability was determined by the Trypan blue exclusion assay. Cell cycle phase distribution and apoptosis were measured using flow cytometry, fluorescence microscopy and DNA ladder assay. Exposure of exponentially growing gastric AGS cancer cells to CPT induced time-dependent apoptosis and growth inhibition. Serum starvation-synchronized AGS cells (about 60% cells in G0/G1 phase) showed similar cellular responses. Analysis of cell cycle phase distribution of AGS cells treated with CPT for up to 72 h showed no obvious differences compared to untreated control cells. Although the induction of apoptosis was noticed in gastric cancer cell lines both with and without p53, cells lacking p53 showed less apoptosis compared to those cell lines possessing p53. Our data show that CPT is capable of inducing gastric cancer cell growth inhibition and apoptosis. Wild-type p53 may enhance the cytotoxicity of CPT against gastric carcinoma.