A novel diiron complex as a functional model for hemerythrin

J Inorg Biochem. 2000 Nov;82(1-4):153-62. doi: 10.1016/s0162-0134(00)00163-x.

Abstract

Diiron(II) complexes with a novel dinucleating polypyridine ligand, N,N,N',N'-tetrakis(6-pivalamido-2-pyridylmethyl)-1,3-diaminopropan-2-ol (HTPPDO), were synthesized as functional models of hemerythrin. Structural characterization of the complexes, [Fe2II(Htppdo)(PhCOO)](ClO4)3 (1), [Fe2II(Htppdo)((p-Cl)PhCOO)](ClO4)3 (2), [Fe2II(Htppdo)((p-Cl)PhCOO)](BF4)3 (2') and [Fe2II(tppdo)((p-Cl)PhCOO)](ClO4)2 (3), were accomplished by electronic absorption, and IR spectroscopic, electrochemical, and X-ray diffraction methods. The crystal structures of 1 and 2' revealed that the two iron atoms are asymmetrically coordinated with HTPPDO and bridging benzoate. One of the iron centers (Fe(1)) has a seven-coordinate capped octahedral geometry comprised of an N3O4 donor set which includes the propanol oxygen of HTPPDO. The other iron center (Fe(2)) forms an octahedron with an N3O3 donor set and one vacant site. The two iron atoms are bridged by benzoate (1) or p-chlorobenzoate (2). On the other hand, both Fe atoms of complex 3 are both symmetrically coordinated with N3O4 donors and two bridging ligands; benzoate and the propanolate of TPPDO. Reactions of these complexes with dioxygen were followed by electronic absorption, resonance Raman and ESR spectroscopies. Reversible dioxygen-binding was demonstrated by observation of an intense LMCT band for O2(2-) to Fe(III) at 610 (1) and 606 nm (2) upon exposure of dioxygen to acetone solutions of 1 and 2 prepared under an anaerobic conditions at -50 degrees C. The resonance Raman spectra of the dioxygen adduct of 1 exhibited two peaks assignable to the nu(O-O) stretching mode at 873 and 887 cm(-1), which shifted to 825 and 839 cm(-1) upon binding of (18)O2. ESR spectra of all dioxygen adducts were silent. These findings suggest that dioxygen coordinates to the diiron atoms as a peroxo anion in a mu-1,2 mode. Complex 3 exhibited irreversible dioxygen binding. These results indicate that the reversible binding of dioxygen is governed by the hydrophobicity of the dioxygen-binding environment rather than the iron redox potentials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray
  • Hemerythrin / chemistry*
  • Iron / chemistry*
  • Iron Compounds / chemical synthesis*
  • Iron Compounds / chemistry
  • Models, Molecular
  • Molecular Structure
  • Oxygen / chemistry*
  • Propanols / chemical synthesis
  • Propanols / chemistry*
  • Pyridines / chemical synthesis
  • Pyridines / chemistry*
  • Spectrum Analysis, Raman

Substances

  • Hemerythrin
  • Iron Compounds
  • N,N,N',N'-tetrakis(6-pivalamido-2-pyridylmethyl)-1,3-diaminopropan-2-ol
  • Propanols
  • Pyridines
  • Iron
  • Oxygen