Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent, factor Xa (fXa)-dependent small protein inhibitor of factor VIIa-tissue factor (fVIIa.TF), which binds to a site on fXa that is distinct from the catalytic center (exo-site). In the present study, the role of other fX derivatives in presenting rNAPc2 to fVIIa.TF is investigated. Catalytically active and active site blocked fXa, as well as a plasma-derived and an activation-resistant mutant of zymogen fX bound to rNAPc2 with comparable affinities (K(D) = 1-10 nm), and similarly supported the inhibition of fVIIa.TF (K(i)* = approximately 10 pm). The roles of phospholipid membrane composition in the inhibition of fVIIa.TF by rNAPc2 were investigated using TF that was either detergent-solubilized (TF(S)), or reconstituted into membranes, containing phosphatidylcholine (TF(PC)) or a mixture of phosphatidylcholine and phosphatidylserine (TF(PCPS)). In the absence of the fX derivative, inhibition of fVIIa.TF was similar for all three conditions (K(i) approximately 1 microm), whereas the addition of the fX derivative increased the respective inhibition by 35-, 150-, or 100,000-fold for TF(S), TF(PC), and TF(PCPS). The removal of the gamma-carboxyglutamic acid-containing domain from the fX derivative did not affect the binding to rNAPc2, but abolished the effect of factor Xa as a scaffold for the inhibition of fVIIa.TF by rNAPc2. The overall anticoagulant potency of rNAPc2, therefore, results from a coordinated recognition of an exo-site on fX/fXa and of the active site of fVIIa, both of which are properly positioned in the ternary fVIIa.TF.fX(a) complex assembled on an appropriate phospholipid surface.