Sphingosine 1-phosphate (SPP), a platelet-derived bioactive lysophospholipid, is a regulator of angiogenesis. However, molecular mechanisms involved in SPP-induced angiogenic responses are not fully defined. Here we report the molecular mechanisms involved in SPP-induced human umbilical vein endothelial cell (HUVEC) adhesion and migration. SPP-induced HUVEC migration is potently inhibited by antisense phosphothioate oligonucleotides against EDG-1 as well as EDG-3 receptors. In addition, C3 exotoxin blocked SPP-induced cell attachment, spreading and migration on fibronectin-, vitronectin- and Matrigel-coated surfaces, suggesting that endothelial differentiation gene receptor signaling via the Rho pathway is critical for SPP-induced cell migration. Indeed, SPP induced Rho activation in an adherence-independent manner, whereas Rac activation was dispensible for cell attachment and focal contact formation. Interestingly, both EDG-1 and -3 receptors were required for Rho activation. Since integrins are critical for cell adhesion, migration, and angiogenesis, we examined the effects of blocking antibodies against alpha(v)beta(3), beta(1), or beta(3) integrins. SPP induced Rho-dependent integrin clustering into focal contact sites, which was essential for cell adhesion, spreading and migration. Blockage of alpha(v)beta(3)- or beta(1)-containing integrins inhibited SPP-induced HUVEC migration. Together our results suggest that endothelial differentiation gene receptor-mediated Rho signaling is required for the activation of integrin alpha(v)beta(3) as well as beta(1)-containing integrins, leading to the formation of initial focal contacts and endothelial cell migration.