Background and purpose: We generated regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) studies from dynamic susceptibility contrast-enhanced MR images after an intravenous bolus injection of contrast agent (perfusion-weighted imaging [PWI]) by applying indicator dilution theory. We used a multishot echo-planar imaging (EPI) sequence to obtain adequate arterial input function (AIF). Our purpose was to compare the cerebral hemodynamics measured by PWI with the rCBF values and cerebral perfusion reserve obtained by xenon-133 single-photon emission CT (133Xe-SPECT).
Methods: Eight patients with chronic internal carotid artery occlusion or stenosis were examined. PWI data were acquired using a multishot EPI sequence, and the AIF was determined automatically. Our procedure was based on indicator dilution theory and deconvolution analysis. To eliminate the effect of superficial vessels, the automatic threshold selection method was used.
Results: AIF was adequate to generate rCBF and rCBV images. The rCBF and rCBV images by PWI were superior to 133Xe-SPECT scans in spatial resolution, and the rCBF values obtained by PWI correlated well with those obtained by 133Xe-SPECT. The regions with severely decreased perfusion reserve, which were determined by pre- and post-acetazolamide 133Xe-SPECT, showed significantly lower rCBF and higher rCBV by PWI than did regions with normal and moderately decreased perfusion reserve.
Conclusion: The rCBF and rCBV images generated by our procedure using PWI data appear to provide important clinical information for evaluating the degree of cerebral perfusion reserve impairment in patients with chronic ischemia.