Effect of dopamine infusion on hemodynamics after hepatic denervation

J Surg Res. 2001 Mar;96(1):23-9. doi: 10.1006/jsre.2000.6064.

Abstract

Background: . The effects of dopamine (DA) on systemic hemodynamics are better understood than its effects on hepatic hemodynamics, especially after liver denervation occurring during liver transplantation. Therefore, a porcine model was used to study DA's effects on hemodynamics after hepatic denervation.

Materials and methods: Fifteen pigs underwent laparotomy for catheter and flow probe placement. The experimental group (n = 7) also underwent hepatic denervation. After 1 week, all pigs underwent DA infusion at increasing doses (3-30 mcg/kg/min) while measuring hepatic parameters [portal vein flow (PVF), hepatic artery flow (HAF), total hepatic blood flow (THBF = HAF + PVF), portal and hepatic vein pressures] and systemic parameters [heart rate (HR), mean arterial pressure (MAP)].

Results: There was a significant increase in HAF from baseline to the 30 mcg/kg/min DA infusion rate (within-subjects P < 0.01), but the differences between the two groups were not significant. PVF and THBF showed large effects (increases) with denervation, but the increase in flow with DA infusion was not present after denervation. Perihepatic pressures were unchanged by denervation or DA. Heart rate differed significantly between the control and denervated animals at baseline, 3, 6, 12 (all P < 0.05), and 30 mcg/kg/min DA (P = 0.10). Control vs denervation MAP at baseline was 100 +/- 4 vs 98 +/- 4 Torr and at 30 mcg/kg/min it was 110 +/- 3 vs 101 +/- 5 mm Hg.

Conclusions: Hepatic flows tended to be higher after denervation. HAF showed similar increases with DA in both control and denervation groups. Increases in PVF and THBF with DA infusion were not present after denervation. HR was significantly decreased and MAP tended to be lower after denervation. The HR and MAP response to DA was similar in both groups. Therefore, both denervation and DA infusion have an effect on systemic and hepatic hemodynamics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / drug effects
  • Cardiotonic Agents / pharmacology*
  • Denervation
  • Dopamine / pharmacology*
  • Heart Rate / drug effects
  • Hepatic Artery / physiology
  • Infusions, Intravenous
  • Liver / blood supply
  • Liver / innervation*
  • Liver Circulation / drug effects*
  • Liver Transplantation
  • Portal Vein / physiology
  • Swine

Substances

  • Cardiotonic Agents
  • Dopamine