The role of innate immunity in natural resistance to tumor progression was investigated in two mouse lines, AIRmax and AIRmin, selected by bi-directional selective breeding on the basis of high or low acute inflammatory response. Compared with AIRmin, AIRmax mice were shown to be resistant to 7,12-dimethylbenz[a]anthracene (DMBA)/12-O:-tetradecanoylphorbol-13-acetate-induced skin cancers and here we demonstrate that AIRmax are also able to restrain the development of metastases upon transfer of MHC compatible, incompatible or xenogeneic melanomas. An acute inflammatory response to melanoma cells was observed in AIRmax mice only, although both lines were found to mount similar specific immune responses to melanoma antigens. The genetically selected lines therefore represent a model system to analyze the positive correlation between multiple resistance to tumorigenesis and host inflammatory responsiveness.