2'-Deoxyribo- and ribo-oligonucleotide N3'-->P5'phosphoramidates containing 2,6-diaminopurine nucleosides were synthesized. Thermal denaturation experiments demonstrated a significant stabilization of the complexes formed by these compounds with DNA and RNA complementary strands, relative to adenosine-containing phosphoramidate counterparts. The increase in melting temperature of the complexes reached up to 6.9 degrees C per substitution. The observed stabilization was attributed to the apparent synergistic effects of N-type sugar puckering of the oligonucleotide N3'-->P5' phosphoramidate backbone, and the ability of 2,6-diaminopurine bases to form three hydrogen bonds.