The deposition of amyloid Abeta peptide in the wall of cerebral vessels (cerebral amyloid angiopathy), can lead to weakness and rupture of the vessel wall, resulting in hemorrhagic stroke. The Tg2576 transgenic mouse line, overexpressing mutant amyloid precursor protein in an age-dependent manner, forms amyloid angiopathy morphologically similar to that seen in the human. We report here the structural and functional disruption of smooth muscle cells (SMCs) in the walls of pial vessels affected by amyloid deposition in the Tg2576 mouse. We demonstrate, using multiphoton imaging, that the arrangement of SMCs becomes disorganized before the onset of cell death, and that these disorganized SMCs are unable to respond appropriately to application of endothelial-dependent and endothelial-independent vasodilators in a closed-cranial window preparation.