The role of endogenous IL-1beta in regulating spontaneous and Fas-triggered apoptosis of human PMN has been studied in relation to the activity of the IL-1beta-generating enzyme ICE (caspase-1), an enzyme also involved in the mechanism of cell death. Upon in vitro culture, PMN undergo spontaneous apoptosis and express increasing levels of IL-1beta, caspase-1- and caspase-3-like enzymes. Endogenous IL-1beta protects PMN from apoptosis, since inhibition of either IL-1beta or caspase-1 activity can accelerate PMN apoptotic death. Thus, in spontaneous PMN apoptosis caspase-1 essentially plays an anti-apoptotic role by inducing maturation of protective IL-1beta, whereas other molecules are responsible of driving apoptosis. Upon Fas triggering, PMN apoptosis is greatly accelerated, in correlation with increased caspase activity, whereas IL-1beta production is not augmented. Inhibition of IL-1beta activity can increase Fas-induced apoptosis, whereas caspase-1 inhibitors are without significant effect. It is hypothesized that in Fas-induced PMN apoptosis caspase-1 has a double role: it can protect from apoptosis through generation of protective IL-1beta, as in spontaneous apoptosis, and it can also exert pro-apoptotic activity which counterbalances the protective effect and allows accelerated apoptosis.