The first four generations of cobaltocenium-functionalized, diaminobutane-based poly(propylene imine) dendrimers DAB-dend-Cb,(PFb)x (x = 4, 8, 16, and 32; Cb=[Co(eta5-C5H4CONH)(eta5-C5H5)] (1-4) have been synthesized and characterized. The redox activity of the cobaltocenium centers in 1-4 has been characterized by using cyclic voltammetry and the electrochemical quartz-crystal microbalance (EQCM). All of the dendrimers exhibit reversible redox chemistry associated with the cobaltocenium/cobaltocene redox couple. Upon reduction. the dendrimers exhibit a tendency to electrodeposit onto the electrode surface, which is more pronounced for the higher generations. Pt and glassy carbon electrodes could be modified with films derived from 1-4,exhibiting a well-defined and persistent electrochemical response. EQCM measurements show that the dendrimers adsorb, at open circuit, onto platinum surfaces at monolayer or submonolayer coverage. Cathodic potential scanning past -0.75 V at which the cobaltocenium sites are reduced, gave rise to the electrodeposition of multilayer equivalents of the dendrimers. The additional material gradually desorbs upon re-oxidation so that only a monolayer equivalent remains on the electrode surface. Changes in film morphology as a function of dendrimer generation and surface coverage were studied by using admittance measurements of the quartz-crystal resonator on the basis of its electrical equivalent circuit, especially in terms of its resistance parameter. In general, we find that films of the lower dendrimer generation 1 behave rigidly, whereas those of the higher generation 4 exhibit viscoelastic behavior with an intermediate behavior being exhibited by 2 and 3. Using tapping-mode atomic force microscopy (AFM). we have been able to obtain molecularly resolved images of dendrimer 4 adsorbed on a Pt(111) electrode.