157Gd is a potential agent for neutron capture cancer therapy (GdNCT). We directly observed the microdistribution of Gd in cultured human glioblastoma cells exposed to Gd-diethylenetriaminepentaacetic acid (Gd-DTPA). We demonstrated, with three independent techniques, that Gd-DTPA penetrates the plasma membrane, and we observed no deleterious effect on cell survival. A systematic microchemical analysis revealed a higher Gd accumulation in cell nuclei compared with cytoplasm. This is significant for prospective GdNCT because the proximity of Gd to DNA increases the cell-killing potential of the short-range, high-energy electrons emitted during the neutron capture reaction. We also exposed Gd-containing cells to thermal neutrons and demonstrated the GdNC reaction effectiveness in inducing cell death. These results in vitro stimulated in vivo Gd-DTPA uptake studies, currently underway, in human glioblastoma patients.