A new and relatively simple method is presented to distribute total dose-area product (DAP) over a number of projections that model exposure during double contrast barium enema (DCBE) examinations. In addition, hitherto unavailable entrance and effective doses to the physician performing the DCBE examination have been determined. DAP, fluoroscopy time, number of images as well as some patient data were collected for 150 DCBE examinations. For a subset of 50 examinations, the distribution of DAP over 12 hypothetical but representative projections was estimated by measuring the entrance dose in the centre of each of these projections during the complete procedure. Effective dose to the patient was obtained using DAP to effective dose conversion coefficients calculated for each of the 12 projections. Exposure of the worker was quantified by measuring the entrance dose at the forehead, neck, arms, right hand and legs. The sex-averaged effective dose to the patient per examination was 6.4+/-2.1 mSv (mean+/-SD; n=50) and the corresponding DAP was 44+/-22 Gy cm(2). The effective dose to the worker per examination was 0.52 microGy (n=50), whereas the highest entrance dose of 30+/-25 microGy was found for the right arm. The proposed method for deriving the distribution of total DAP over a set of representative projections is much less time consuming than visual observation of patient exposure, whilst accuracy seems acceptable. Entrance and effective doses per examination for workers in DCBE examinations are very low. For a normal workload, doses remain far below the legally established dose limits.