Estrogen-regulated gene expression is dependent on interaction of the estrogen receptor (ER) with the estrogen response element (ERE). We assessed the ability of the ER to activate transcription of reporter plasmids containing either the consensus vitellogenin A2 ERE or the imperfect pS2, vitellogenin B1, or oxytocin (OT) ERE. The A2 ERE was the most potent activator of transcription. The OT ERE was significantly more effective in activating transcription than either the pS2 or B1 ERE. In deoxyribonuclease I (DNase I) footprinting experiments, MCF-7 proteins protected A2 and OT EREs more effectively than the pS2 and B1 EREs. Limited protease digestion of the A2, pS2, B1, or OT ERE-bound receptor with V8 protease or proteinase K produced distinct cleavage products demonstrating that individual ERE sequences induce specific changes in ER conformation. Receptor interaction domains of glucocorticoid receptor interacting protein 1 and steroid receptor coactivator 1 bound effectively to the A2, pS2, B1, and OT ERE-bound receptor and significantly stabilized the receptor-DNA interaction. Similar levels of the full-length p160 protein amplified in breast cancer 1 were recruited from HeLa nuclear extracts by the A2, pS2, B1, and OT ERE-bound receptors. In contrast, significantly less transcriptional intermediary factor 2 was recruited by the B1 ERE-bound receptor than by the A2 ERE-bound receptor. These studies suggest that allosteric modulation of ER conformation by individual ERE sequences influences the recruitment of specific coactivator proteins and leads to differential expression of genes containing divergent ERE sequences.