Batch and dynamic leaching methods were used to evaluate the effectiveness of hydroxyapatite (HA), illite, and zeolite, alone and in combination, as soil additives for reducing the migration of cesium-137 (137Cs+) and uranium (U) from contaminated sediments. Amendment treatments ranging from 0 to 50 g kg(-1) were added to the sediment and equilibrated in 0.001 M CaCl2. After equilibration, the treatment supernatants were analyzed for 137Cs+, U, PO4, and other metals. The residual sediments were then extracted overnight using one of the following: 1.0 M NH4Cl, 0.5 M CaCl2, or the Toxicity Characteristic Leaching Procedure (TCLP) extractant. Cesium was strongly sorbed to the contaminated sediments, presumably due to interlayer fixation within native illitic clays. In fact, 137Cs+ was below detection limits in the initial equilibration solutions, the CaCl2 extract, and the TCLP solution, regardless of amendment. Extractants selective for interlayer cations (1.0 M NH4Cl) were necessary to extract measurable levels of 137Cs+. Addition of illitic clays further reduced Cs+ extractability, even when subjected to the aggressive extractants. Zeolite, however, was ineffective in reducing Cs+ mobility when subjected to the aggressive extractants. Hydroxyapatite was less effective than illite at reducing NH4+-extractable Cs+. Hydroxyapatite, and mixtures of HA with illite or zeolite, were highly effective in reducing U extractability in both batch and leaching tests. Uranium immobilization by HA was rapid with similar final U concentrations observed for equilibration times ranging from 1 h to 30 d. The current results demonstrate the effectiveness of soil amendments in reducing the mobility of U and Cs+, which makes in-place immobilization an effective remediation alternative.