Oxazolidinones are potent inhibitors of bacterial protein biosynthesis. Previous studies have demonstrated that this new class of antimicrobial agent blocks translation by inhibiting initiation complex formation, while post-initiation translation by polysomes and poly(U)-dependent translation is not a target for these compounds. We found that oxazolidinones inhibit translation of natural mRNA templates but have no significant effect on poly(A)-dependent translation. Here we show that various oxazolidinones inhibit ribosomal peptidyltransferase activity in the simple reaction of 70 S ribosomes using initiator-tRNA or N-protected CCA-Phe as a P-site substrate and puromycin as an A-site substrate. Steady-state kinetic analysis shows that oxazolidinones display a competitive inhibition pattern with respect to both the P-site and A-site substrates. This is consistent with a rapid equilibrium, ordered mechanism of the peptidyltransferase reaction, wherein binding of the A-site substrate can occur only after complex formation between peptidyltransferase and the P-site substrate. We propose that oxazolidinones inhibit bacterial protein biosynthesis by interfering with the binding of initiator fMet-tRNA(i)(Met) to the ribosomal peptidyltransferase P-site, which is vacant only prior to the formation of the first peptide bond.