Stromal-derived cell factor-1 alpha (SDF-1 alpha; CXCL12) and its receptor, CXCR4, are constitutively expressed on neuroepithelial cells and are believed to be involved in both development and pathological processes, such as AIDS-associated neurologic disorders. Here, we demonstrate that SDF-1 alpha activates NF-kappa B, stimulates production of chemokines and cytokines, and induces cell death in primary astrocytes, effects that depend on ongoing secretion of TNF-alpha. SDF-1 alpha upregulated TNF-alpha mRNA and protein secretion, as well as TNF receptor 2 expression. TNF-alpha treatment mimicked SDF-1 alpha induction of NF-kappa B, IL-1 alpha/beta, and RANTES, as well as cell death; neutralizing antibodies against TNF-alpha opposed these responses. We also found that SDF-1 alpha activated Erk1 and Erk2 (Erk1/2) MAPK in a biphasic fashion. Early Erk1/2 activation was stimulated directly by SDF-1 alpha and late activation was mediated by TNF-alpha. PD98059 suppression of early Erk1/2 activation correlated with reduction of SDF-1 alpha-induced TNF-alpha expression. Late Erk1/2 activation was involved in TNF-alpha-stimulated NF-kappa B activation and cytokine induction. SDF-1 alpha was induced in reactive CXCR4-positive astrocytes near axotomized spinal cord motor neurons, consistent with autocrine SDF-1/CXCR4 signaling in these cells. We propose that these novel effects of SDF-1 alpha are relevant to the pathogenic and developmental roles of SDF-1 alpha in the CNS.