The small and large intestines differ in their expression profiles of Bcl-2 homologs. Intestinal segment-specific Bcl-2 homolog expression profiles are acquired as early as by mid-gestation (18-20 weeks) in man. In the present study, we examined the question whether such distinctions underlie segment-specific control mechanisms of intestinal cell survival. Using mid-gestation human jejunum and colon organotypic cultures, we analyzed the impact of growth factors (namely insulin; 10 microg/ml) and pharmacological compounds that inhibit signal transduction molecules/pathways (namely tyrosine kinases, Fak, P13-K/Akt, and MEK/Erk) on cell survival and Bcl-2 homolog expression (anti-apoptotic: Bcl-2, Bcl-X(L), Mcl-1; pro-apoptotic: Bax, Bak, Bad). The relative activation levels of p125Fak, p42Erk-2, and p57Akt were analyzed as well. Herein, we report that (1) the inhibition of signal transduction molecules/pathways revealed striking differences in their impact on cell survival in the jejunum and colon (e.g., the inhibition of p125Fak induced apoptosis with a significantly greater extent in the jejunum [approximately 43%] than in the colon [approximately 24%]); (2) sharp distinctions between the two segments were noted in the modulatory effects of the various treatments on Bcl-2 homolog steady-state levels (e.g., inhibition of tyrosine kinase activities in the jejunum down-regulated all anti-apoptotics analyzed while increasing Bax, whereas the same treatment in the colon down-regulated Bcl-X(L) only and increased all pro-apoptotics); and (3) in addition to their differential impact on cell survival and Bcl-2 homolog expression, the MEK/Erk and P13-K/Akt pathways were found to be distinctively regulated in the jejunum and colon mucosae (e.g., insulin in the jejunum increased p42Erk-2 activation without affecting that of p57Akt, whereas the same treatment in the colon decreased p42Erk-2 activation while increasing that of p57Akt). Altogether, these data show that intestinal cell survival is characterized by segment-specific susceptibilities to apoptosis, which are in turn linked with segmental distinctions in the involvement of signaling pathways and the regulation of Bcl-2 homolog steady-state levels. Therefore, these indicate that cell survival is subject to segment-specific control mechanisms along the proximal-distal axis of the intestine.