Diabetes in non-obese diabetic (NOD) mice is mediated by pathogenic T-helper type 1 (Th1) cells that arise because of a deficiency in regulatory or suppressor T cells. V alpha 14-J alpha 15 natural killer T (NKT) cells recognize lipid antigens presented by the major histocompatibility complex class I-like protein CD1d (refs. 3,4). We have previously shown that in vivo activation of V alpha 14 NKT cells by alpha-galactosylceramide (alpha-GalCer) and CD1d potentiates Th2-mediated adaptive immune responses. Here we show that alpha-GalCer prevents development of diabetes in wild-type but not CD1d-deficient NOD mice. Disease prevention correlated with the ability of alpha-GalCer to suppress interferon-gamma but not interleukin-4 production by NKT cells, to increase serum immunoglobulin E levels, and to promote the generation of islet autoantigen-specific Th2 cells. Because alpha-GalCer recognition by NKT cells is conserved among mice and humans, these findings indicate that alpha-GalCer might be useful for therapeutic intervention in human diseases characterized by Th1-mediated pathology such as Type 1 diabetes.