Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways

J Biol Chem. 2001 Nov 23;276(47):43668-76. doi: 10.1074/jbc.M107341200. Epub 2001 Sep 11.

Abstract

To identify neural tumor cell lines that could be used as models to study growth-related natriuretic peptide actions, we determined the effects of these peptides on the proliferation of human and rodent neuroblastoma cell lines. Subnanomolar concentrations of atrial natriuretic peptide (ANP) and type C natriuretic peptide (CNP) stimulated proliferation in all four cell lines. These actions were associated with cGMP elevation and were blocked by a protein kinase G inhibitor. These data imply the involvement of guanylyl cyclase (GC)-coupled natriuretic receptors. However, higher concentrations of ANP and CNP, and low concentrations of des-[Gln(18),Ser(19),Gly(20),Leu(21),Gly(22)]-ANP(4-23)-NH(2) (desANP(4-23)) (analog for NPR-C receptor) exerted antiproliferative actions in three of the cell lines. These effects were insensitive to a protein kinase G inhibitor and to HS-142-1, suggesting that growth-inhibitory actions involved a non-GC receptor. They did not appear to involve cAMP, protein kinase A, protein kinase C, or calcium mobilization but were abolished when constitutive mitogen-activated protein kinase activity was inhibited. Radioligand binding experiments revealed the presence of a uniform class of binding sites in NG108 cells and multiple binding sites in Neuro2a cells. Northern and reverse transcriptase-polymerase chain reaction analyses revealed differential gene expression for NPR-A/B/C in NG108 and Neuro2a cells. The results indicate that natriuretic peptides stimulate neuroblastoma cell proliferation through type NPR-A/B (GC) receptors. Higher concentrations of ANP and CNP exerted a mitogen-activated protein kinase-dependent antiproliferative action mediated by a non-GC receptor that interacts with desANP(4-23) with relatively high affinity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Atrial Natriuretic Factor / chemistry
  • Atrial Natriuretic Factor / pharmacology*
  • Base Sequence
  • Cell Division / drug effects*
  • Guanylate Cyclase / metabolism*
  • Molecular Sequence Data
  • Neuroblastoma / pathology*
  • Receptors, Atrial Natriuretic Factor / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tumor Cells, Cultured

Substances

  • Atrial Natriuretic Factor
  • Guanylate Cyclase
  • Receptors, Atrial Natriuretic Factor
  • atrial natriuretic factor receptor C