Frequencies of stable chromosome aberrations from more than 3,000 atomic bomb survivors were used to examine the nature of the radiation dose response. The end point was the proportion of cells with at least one translocation or inversion detected in Giemsa-stained cultures of approximately 100 lymphocytes per person. The statistical methods allow for both imprecision of individual dose estimates and extra-binomial variation. A highly significant and nonlinear dose response was seen. The shape of the dose response was concave upward for doses below 1.5 Sv but exhibited some leveling off at higher doses. This curvature was similar for the two cities, with a crossover dose (i.e. the ratio of the linear coefficient to the quadratic coefficient) of 1.7 Sv (95% CI 0.9, 4). The low-dose slopes for the two cities differed significantly: 6.6% per Sv (95% CI 5.5, 8.4) in Hiroshima and 3.7% (95% CI 2.6, 4.9) in Nagasaki. This difference was reduced considerably, but not eliminated, when the comparison was limited to people who were exposed in houses or tenements. Nagasaki survivors exposed in factories, as well as people in either city who were outside with little or no shielding, had a lower dose response than those exposed in houses. This suggests that doses for Nagasaki factory worker survivors may be overestimated by the DS86, apparently by about 60%. Even though factory workers constitute about 20% of Nagasaki survivors with dose estimates in the range of 0.5 to 2 Sv, calculations indicate that the dosimetry problems for these people have little impact on cancer risk estimates for Nagasaki.