It was previously reported that silencing of the expression of glutamic acid decarboxylase (GAD) in transgenic nonobese diabetic (NOD) mice completely protected islet beta-cells against development of diabetes. This suggests that the repression of GAD autoantigen by somatic gene delivery can prevent autoimmune destruction of pancreatic beta-cells. To repress GAD expression in islet beta-cells, we delivered an antisense GAD mRNA expression plasmid (pRIP-AS-GAD) using poly(ethylene glycol)-grafted poly-L-lysine (PEG-g-PLL) as a gene carrier. In a gel retardation assay, the pRIP-AS-GAD/PEG-g-PLL complex was completely retarded above a weight ratio of 1:1.5 (plasmid: PEG-g-PLL). PEG-g-PLL protected the plasmid DNA from DNase I for more than 60 minutes. In a reporter gene transfection assay, PEG-g-PLL showed the highest transfection efficiency at a weight ratio of 1:3. We also transfected pRIP-AS-GAD/PEG-g-PLL complex into a GAD-producing mouse insulinoma (MIN6) cell line. The antisense mRNA was expressed specifically in beta-cells and expression was dependent on glucose level. The repression of GAD after transfection of pRIP-AS-GAD was confirmed by immunoblot assay. In addition, in vivo expression of antisense RNA in pancreas was confirmed by RT-PCR after intravenous injection of the complex into mice. Therefore, our study revealed that the pRIP-AS-GAD/PEG-g-PLL system is applicable for the repression of GAD autoantigen expression.