Model Investigations for Vanadium-Protein Interactions. Synthetic, Structural, and Physical Studies of Vanadium(III) and Oxovanadium(IV/V) Complexes with Amidate Ligands

Inorg Chem. 1996 Jan 17;35(2):357-367. doi: 10.1021/ic9503803.

Abstract

Reaction of the amide ligand N-[2-((2-pyridylmethylene)amino)phenyl]pyridine-2-carboxamide (Hcapca) with VCl(3) affords the compound trans-[VCl(2)(capca)] (1), the first example of a vanadium(III) complex containing a vanadium-deprotonated amide nitrogen bond, while reaction of bis(pentane-2,4-dionato)oxovanadium(IV) with the related ligands N-[2-((2-phenolylmethylene)amino)phenyl]pyridine-2-carboxamide (H(2)phepca), 1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzene (H(3)hypyb), and 1,2-bis(2-hydroxybenzamido)benzene (H(4)hybeb) yields the complexes [VO(phepca)] (2), Na[VO(hypyb)].2CH(3)OH (4.2CH(3)OH), and Na(2)[VO(hybeb)].3CH(3)OH (5.3CH(3)OH) respectively. The preparation of the complex {N-[2-((2-thiophenoylmethylene)amino)phenyl]pyridine-2-carboxamido}oxovanadium(IV) (3) has been achieved by reaction of N-(2-aminophenyl)pyridine-2-carboxamide and 2-mercaptobenzaldehyde with [VO(CH(3)COO)(2)](x)(). Oxidation of complex 5.3CH(3)OH with silver nitrate gives its vanadium(V) analogue (8.CH(3)OH), which is readily converted to its corresponding tetraethylammonium salt (10.CH(2)Cl(2)) by a reaction with Et(4)NCl. The crystal structures of the octahedral 1.CH(3)CN, and the square-pyramidal complexes 3, 4.CH(3)CN, 5.2CH(3)OH, and 10 were demonstrated by X-ray diffraction analysis. Crystal data are as follows: 1.CH(3)CN, C(18)H(13)Cl(2)N(4)OV.CH(3)CN M(r) = 464.23, monoclinic, P2(1)/n, a = 10.5991(7) Å, b = 13.9981(7) Å, c = 14.4021(7) Å, beta = 98.649(2)(o), V = 2112.5(3) A(3), Z = 4, R = 0.0323, and R(w) 0.0335; 3, C(19)H(13)N(3)O(2)SV, M(r) = 398.34, monoclinic, P2(1)/n, a = 12.1108(10) Å, b = 19.4439(18) Å, c = 7.2351(7) Å, beta = 103.012(3) degrees, V = 1660.0(4) Å(3), Z = 4, R = 0.0355, and R(w) = 0.0376; 4.CH(3)CN, C(19)H(12)N(3)O(4)VNa.CH(3)CN, M(r) = 461.31, monoclinic, P2(1)/c, a = 11.528(1) Å, b = 11.209(1) Å, c = 16.512(2) Å, beta = 103.928(4)(o), V = 2071.0(5) Å(3), Z = 4, R = 0.0649, and R(w) = 0.0806; 5.2CH(3)OH, C(20)H(10)N(2)O(5)VNa(2).2CH(3)OH, M(r) = 519.31, triclinic, P1, a = 12.839(1) Å, b = 8.334(1) Å, c = 12.201(1) Å, alpha = 106.492(2) degrees, beta = 105.408(2) degrees, gamma = 73.465(2) degrees, V = 1175.6(3) Å(3), Z = 2, R = 0.0894, and R(w) = 0.1043; 10, C(28)H(32)N(3)O(5)V M(r) = 541.52, monoclinic, P2(1)/c, a = 11.711(3) Å, b = 18.554(5) Å, c = 12.335(3) Å, beta = 95.947(9) degrees, V = 2666(2) Å(3), Z = 4, R = 0.0904, and R(w) = 0.0879. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, and electrochemical properties of these complexes. Electron paramagnetic resonance [of oxovanadium(IV) species] and (1)H, (13)C{(1)H}, and (51)V nuclear magnetic resonance [of oxovanadium(V) complex] properties are reported as well. This study represents the first systematic study of vanadium(III), V(IV)O(2+), and V(V)O(3+) species containing a vanadium-deprotonated amide nitrogen bond.