Unmethylated cytosine-phosphorothioate-guanine (CpG) containing oligodeoxynucleotides (CpG-ODN) are known to act as adjuvants and powerful activators of the innate immune system. We investigated the therapeutic effect of CpG-ODN on a variety of established mouse tumors including AG104A, IE7 fibrosarcoma, B16 melanoma, and 3LL lung carcinoma. These tumors are only weakly immunogenic and notoriously difficult to treat. Repeated peritumoral injection of CpG-ODN resulted in complete rejection or strong inhibition of tumor growth, whereas systemic application had only partial effects. The CpG-ODN-induced tumor rejection was found to be mediated by both NK and tumor-specific CD8(+) T cells. Comparison of parental tumors and variants rendered more antigenic by transfection with tumor Ags suggested that the efficiency of the CpG-ODN therapy correlated with the antigenicity of the tumors. Peritumoral CpG-ODN treatment was even effective in a situation where the immune system was tolerant for the tumor Ag, as shown by breakage of tolerance and tumor elimination. These results suggest that peritumoral application of CpG-ODN acts locally by inducing NK cells, and also leads to efficient presentation of tumor Ags and stimulation of CD8(+) effector and memory T cells, thus providing a powerful antitumor therapy that can be also applied without knowledge of the tumor Ag.