Reversible glutathionylation regulates actin polymerization in A431 cells

J Biol Chem. 2001 Dec 21;276(51):47763-6. doi: 10.1074/jbc.C100415200. Epub 2001 Oct 29.

Abstract

In response to growth factor stimulation, many mammalian cells transiently generate reactive oxygen species (ROS) that lead to the elevation of tyrosine-phosphorylated and glutathionylated proteins. While investigating EGF-induced glutathionylation in A431 cells, paradoxically we found deglutathionylation of a major 42-kDa protein identified as actin. Mass spectrometric analysis revealed that the glutathionylation site is Cys-374. Deglutathionylation of the G-actin leads to about a 6-fold increase in the rate of polymerization. In vivo studies revealed a 12% increase in F-actin content 15 min after EGF treatment, and F-actin was found in the cell periphery suggesting that in response to growth factor, actin polymerization in vivo is regulated by a reversible glutathionylation mechanism. Deglutathionylation is most likely catalyzed by glutaredoxin (thioltranferase), because Cd(II), an inhibitor of glutaredoxin, inhibits intracellular actin deglutathionylation at 2 microM comparable with its IC(50) in vitro. Moreover, mass spectral analysis showed efficient transfer of GSH from immobilized S-glutathionylated actin to glutaredoxin. Overall, this study revealed a novel physiological relevance of actin polymerization regulated by reversible glutathionylation of the penultimate cysteine mediated by growth factor stimulation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actins / metabolism*
  • Amino Acid Sequence
  • Biopolymers / metabolism*
  • Cell Line
  • Cytoskeleton / metabolism
  • Epidermal Growth Factor / pharmacology
  • Glutathione / metabolism*
  • Humans
  • Molecular Sequence Data

Substances

  • Actins
  • Biopolymers
  • Epidermal Growth Factor
  • Glutathione