Human intersectins (ITSN1 and ITSN2) are members of a conserved family of proteins involved in clathrin-mediated endocytosis. A short and a long isoform with different protein domain compositions have been described for both human intersectins. Here, we have resolved the exon/intron structure of the ITSN2 gene to explain the genomic origin of its alternatively spliced transcripts. Comparison of the two ITSN human genes shows a high level of conservation in their genomic organization, including the main alternative splicing events. An extensive tissue expression analysis of the two predominant transcripts as well as other minor variants shows that ITSN expression is under tissue and developmental controls. Their differential expression is made more evident when the expression of both intersectins is studied by in situ hybridization in mouse brain.