Synthesis and biological activity of novel thyroid hormone analogues: 5'-aryl substituted GC-1 derivatives

Bioorg Med Chem. 2002 Feb;10(2):333-46. doi: 10.1016/s0968-0896(01)00284-x.

Abstract

Compounds that selectively modulate thyroid hormone action by functioning as isoform-selective agonists or antagonists of the thyroid hormone receptors (TRs) might be useful for medical therapy. We have synthesized a high affinity TRbeta-selective agonist ligand, GC-1, and optimized the synthetic route to provide large quantities of the compound for animal testing. In addition to an improvement in efficiency, the new synthetic route offers a chemical handle for selective modification of the thyronine skeleton to produce new derivatives. To explore the effect of GC-1 core structure modifications on binding to TR isoforms and activation of transcription, we developed here an efficient and flexible route to a new series of 5'-substituted GC-1 analogues. This route relies on ortho lithiation and in situ boration of the biarylmethane compound 1, a key intermediate of the revised GC-1 synthesis, followed by Suzuki cross-coupling. Using this approach we prepared and tested eleven 5'-substituted GC-1 analogues. Substitution at the 5'-position decreased binding affinity, but retained TRbeta-selectivity for most of the compounds. Transactivation assays reveal that most of these compounds function as thyroid hormone agonists, but one compound (GC-14) antagonizes the response to thyroid hormone.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetates*
  • Biphenyl Compounds / chemical synthesis*
  • Biphenyl Compounds / pharmacology*
  • Carboxylic Acids / chemical synthesis*
  • Carboxylic Acids / pharmacology*
  • Drug Design
  • Drug Evaluation, Preclinical
  • HeLa Cells
  • Humans
  • Phenols*
  • Receptors, Thyroid Hormone / agonists*
  • Receptors, Thyroid Hormone / genetics
  • Receptors, Thyroid Hormone / metabolism
  • Structure-Activity Relationship
  • Thyroid Hormones / chemistry*
  • Transcriptional Activation

Substances

  • Acetates
  • Biphenyl Compounds
  • Carboxylic Acids
  • GC 1 compound
  • Phenols
  • Receptors, Thyroid Hormone
  • Thyroid Hormones