Constitutive activation of tyrosine kinases as a consequence of chromosomal translocations, forming fusion genes, plays an important role in the development of hematologic malignancies, in particular, myeloproliferative syndromes (MPSs). In this respect, the t(9;22)(q34;q11) that results in the BCR/ABL fusion gene in chronic myeloid leukemia is one of the best-studied examples. The fibroblast growth factor receptor 1 (FGFR1) gene at 8p11 encodes a transmembrane receptor tyrosine kinase and is similarly activated by chromosomal translocations, in which three alternative genes-ZNF198 at 13q12, CEP110 at 9q34, and FOP at 6q27-become fused to the tyrosine kinase domain of FGFR1. These 8p11-translocations are associated with characteristic morphologic and clinical features, referred to as "8p11 MPS." In this study, we report the isolation and characterization of a novel fusion gene in a hematologic malignancy with a t(8;22)(p11;q11) and features suggestive of 8p11 MPS. We show that the breakpoints in the t(8;22) occur within introns 4 and 8 of the BCR and FGFR1 genes, respectively. On the mRNA level, the t(8;22) results in the fusion of BCR exons 1-4 in-frame with the tyrosine kinase domain of FGFR1 as well as in the expression of a reciprocal FGFR1/BCR chimeric transcript. By analogy with data obtained from previously characterized fusion genes involving FGFR1 and BCR/ABL, it is likely that the oligomerization domain contributed by BCR is critical and that its dimerizing properties lead to aberrant FGFR1 signaling and neoplastic transformation.
Copyright 2001 Wiley-Liss, Inc.