We examined the effects of human immunodeficiency virus infection on the turnover of CD4 and CD8 T lymphocytes in 17 HIV-infected patients by 30 min in vivo pulse labeling with bromodeoxyuridine (BrdU). The percentage of labeled CD4 and CD8 T lymphocytes was initially higher in lymph nodes than in blood. Labeled cells equilibrated between the two compartments within 24 h. Based on mathematical modeling of the dynamics of BrdU-labeled cells in the blood, we identified rapidly and slowly proliferating subpopulations of CD4 and CD8 T lymphocytes. The percentage, but not the decay rate, of labeled CD4 or CD8 cells in the rapidly proliferating pool correlated significantly with plasma HIV RNA levels for both CD4 (r = 0.77, P < 0.001) and CD8 (r = 0.81, P < 0.001) T cells. In six patients there was a geometric mean decrease of greater than 2 logs in HIV levels within 2 to 6 mo after the initiation of highly active antiretroviral therapy; this was associated with a significant decrease in the percentage (but not the decay rate) of labeled cells in the rapidly proliferating pool for both CD4 (P = 0.03) and CD8 (P < 0.001) T lymphocytes. Neither plasma viral levels nor therapy had an effect on the decay rate constants or the percentage of labeled cells in the slowly proliferating pool. Monocyte production was inversely related to viral load (r = -0.56, P = 0.003) and increased with therapy (P = 0.01). These findings demonstrate that HIV does not impair CD4 T cell production but does increase CD4 and CD8 lymphocyte proliferation and death by inducing entry into a rapidly proliferating subpopulation of cells.