Infradian, notably circaseptan testable feedsidewards among chronomes of the ECG and air temperature and pressure

Biomed Pharmacother. 2001:55 Suppl 1:84s-92s. doi: 10.1016/s0753-3322(01)90009-5.

Abstract

To study the interactions among the natural physical environmental cycles and human infradian components of heart rate (HR) and HR variability (HRV), a healthy 49-year-old man in Kiev, who had monitored his electrocardiogram (ECG) around the clock earlier for 50 days, added at a later date with the same ambulatorily wearable device, a record of 70 days. The mean value of the R-R intervals (R-R), their standard deviation (SDNN) and other HRV endpoints, computed over consecutive 5-min intervals, served as markers of the subject's functional associations with the amplitude of fluctuations in atmospheric pressure (FAP) and the planetary Kp index of geomagnetic disturbance. About-weekly and half-weekly cycles in HRV endpoints indicate a reduction in physiological 'preparedness', here described as 'dynamics', of the subject investigated on Saturdays and Sundays and a sharp increase in 'dynamics' on Mondays. The waveform of the weekly oscillation seemed to be influenced by ambient air temperature and FAP. On Mondays, an FAP amplification or a temperature rise was accompanied by a significant decrease in R-R and SDNN, indicating an aggravation of a 'Monday effect' in physiological 'dynamics'. HRV endpoints also revealed about-5-day and about-12-day cyclic components similar to those found in FAP. The infradian pattern in a 70-day record differed from one found earlier in a 50-day record of the same subject. Changes in the natural physical environment (past as well as present), especially in air temperature and FAP, likely influence(d) if not synchronize(d) the amplitude and waveform of infradian weekly and half-weekly physiological cycles. Some of these infradians, their wobbly nature notwithstanding, may have been built into our temporal make-up by an evolutionary integration of life in the non-stationary quasi-periodic natural physical environment, which continues to contribute to variability.

Publication types

  • Clinical Trial

MeSH terms

  • Air Pressure*
  • Balneology
  • Blood Pressure / physiology
  • Electrocardiography / radiation effects*
  • Heart Rate / physiology
  • Humans
  • Male
  • Middle Aged
  • Periodicity*
  • Temperature*