The distribution of NADPH-diaphorase (ND) positive elements was analyzed throughout the visual pathway of the tench in normal conditions and after optic nerve transection. In the control retina, ND-labeled elements were observed in the photoreceptor, inner nuclear, outer nuclear and ganglion cell layers. In the optic nerve of control animals, small and numerous ND-positive glial cells that were identified as presumably astrocyte-like cells were observed. In the optic tracts and optic tectum, a different type of ND-positive glial cell was detected. Axotomy induced severe changes in the ND staining pattern in the visual pathway. A decrease in the number of ND-stained cells was detected in the retina. In the optic nerve of lesioned animals, the number of small cells gradually decreased, whereas the number of large cells did not change. Two new ND-positive cell populations were observed after the lesion: microglial-like cells appeared close to the lesioned area from 24 h to 7 days after transection, and astrocyte-like cells were found throughout the optic nerve from 14 days up to at least 120 days. The total number of ND-stained glial cells increased at 30 and 60 days and returned to control parameters at 120 days. In addition, the number of ND-positive cells increased at the same survival times in the optic tracts and in the retinorecipient strata of the optic tectum with respect to control animals. Thus, degenerative/regenerative processes in the fish visual pathway are accompanied by an increase in the number of ND-positive cells. Synthesis of nitric oxide is elicited in microglial-like cells as a response to axon injury, whereas the expression in astrocyte-like cells seems to be associated with both normal processes under physiological conditions and with the regenerative phase after the lesion.