The majority of the antibody response to HTLV-1 surface glycoprotein, gp46, is directed at conformational epitopes. However, the regions of HTLV-1 gp46 that contain conformational epitopes are poorly defined. We previously reported on human monoclonal antibodies (hMAbs) to conformational epitopes within the HTLV-1 surface glycoprotein (gp46) that inhibit HTLV-1-mediated syncytium formation (Hadlock KG, Rowe J, Perkins S, et al.: J Virol 1997;71:5828-5840). To localize the conformational epitopes recognized by these antibodies, chimeric envelope proteins were constructed in which selected regions of the HTLV-1 envelope were replaced with the corresponding sequences from other members of the HTLV family of retroviruses. The chimeras were tested for reactivity with three hMAbs to conformational epitopes in HTLV-1 gp46, PRH-7A, PRH-3, and PRH-4, and one hMAb to a linear epitope, 0.5alpha. hMAb PRH-3 was specifically nonreactive with a chimera that replaced amino acids 32-36 of HTLV-1 gp46 and exhibited sharply reduced reactivity with a chimera that replaced amino acids 224-251 of HTLV-1 with the corresponding HTLV-2 sequence. hMAb PRH-4 was specifically nonreactive with a construct replacing amino acids 1-162 of HTLV-1 gp46 with the corresponding HTLV-2 sequence. Thus, HTLV-1 gp46 contains multiple conformational epitopes located in the amino-terminal portion of the protein.