Background/aims: Cytoskeletal reorganization plays an important role in the regulation of different cell functions, such as proliferation and migration. Since platelet-derived growth factor (PDGF) stimulates both proliferation and chemotaxis of hepatic stellate cells (HSC), we investigated the effects of this cytokine on cytoskeletal components of cultured rat HSC.
Methods/results: Exposure of HSC to PDGF induced the formation of stress fibres and of a ruffled configuration of the plasma membrane, evaluated by both fluorescence and electron microscopy. These modifications were also induced by exposure to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA) and abolished by pretreatment with the PKC inhibitor calphostin C, with the Rho inhibitor C3 exoenzyme and with the intracellular calcium chelator MAPTAM, but not with the PI-3 kinase inhibitor wortmannin or with the mitogen-activated protein kinase kinase inhibitor PD 98059. PDGF induced a translocation of Rho from the cytosol to the membrane which was inhibited by C3 exoenzyme and by calpostin C, and which was also induced by PMA. Moreover, PDGF induced a rearrangement of vinculin which was prevented by C3 exoenzyme and calphostin C.
Conclusions: PDGF-induced cytoskeletal reorganization in HSC is dependent on PKC and Rho, thus suggesting that these two pathways may play an important role in the response of liver to injury.