Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain

Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2002-7. doi: 10.1073/pnas.042670999.

Abstract

Simian virus 40 large T antigen contains an amino terminal J domain that catalyzes T antigen-mediated viral DNA replication and cellular transformation. To dissect the role of the J domain in these processes, we exploited the genetic tools available only in the yeast Saccharomyces cerevisiae to isolate 14 loss-of-function point mutations in the T antigen J domain. This screen also identified mutations that, when engineered into simian virus 40, resulted in T antigen mutants that were defective for the ability to support viral growth, to transform mammalian cells in culture, to dissociate the p130-E2F4 transcription factor complex, and to stimulate ATP hydrolysis by hsc70, a hallmark of J domain-containing molecular chaperones. These data correlate the chaperone activity of the T antigen J domain with its roles in viral infection and cellular transformation and support a model by which the viral J domain recruits the cytoplasmic hsc70 molecular chaperone in the host to rearrange multiprotein complexes implicated in replication and transformation. More generally, this study presents the use of a yeast screen to identify loss-of-function mutations in a mammalian virus and can serve as a widely applicable method to uncover domain functions of mammalian proteins for which there are yeast homologues with selectable mutant phenotypes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Amino Acid Sequence
  • Antigens, Viral, Tumor / chemistry*
  • HSC70 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins / metabolism
  • Hydrolysis
  • Molecular Sequence Data
  • Mutagenesis
  • Mutation
  • Phenotype
  • Plasmids / metabolism
  • Point Mutation
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae / metabolism
  • Simian virus 40 / genetics*
  • Simian virus 40 / immunology
  • Temperature
  • Time Factors

Substances

  • Antigens, Viral, Tumor
  • HSC70 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Adenosine Triphosphate