Cytotoxic T lymphocytes (CTLs) play a key role in the control of persistent viral infections. Differences in the quality of this cellular immune response influence the long-term outcome of such infections, but the factors that determine which virus-derived peptide epitopes are targeted by CTLs remain poorly understood. Here, we examine the antigen-processing requirements of three human leukocyte antigen (HLA) A*0201-restricted HIV-1 CTL epitopes. Each of these three peptides appears to be generated by a distinct proteolytic pathway, despite presentation on the cell surface in association with the same HLA class I molecule. Presentation of the commonly immunodominant SLYNTVATL (HIV-1 p17 Gag; residues 77-85) epitope was unaffected by inhibition of the proteasome with lactacystin, but was dependent on the presence of the beta-subunit LMP7. These findings are consistent with emerging data on the complexity of peptide epitope generation, and suggest that differences in antigen processing might contribute to patterns of CTL recognition in vivo.