Interaction of pemetrexed disodium (ALIMTA, multitargeted antifolate) and irradiation in vitro

Int J Radiat Oncol Biol Phys. 2002 Apr 1;52(5):1381-8. doi: 10.1016/s0360-3016(01)02794-8.

Abstract

Purpose: Pemetrexed disodium (Alimta, multitargeted antifolate, LY231514; Eli Lilly and Co., Indianapolis, Indiana) ("pemetrexed") is a new folate antimetabolite with significant antitumor activity. Different from classic antifolates, pemetrexed inhibits several key enzymes of thymidylate and purine synthesis, but a radiosensitizing potential may also be presumed. Therefore, the interaction of pemetrexed and ionizing radiation was studied for in vitro clonogenic survival of different human tumor cell lines.

Methods and materials: Human colon (Widr), breast (MCF-7), cervix (Hela), and lung (LXI) carcinoma cells from log-phase cultures were exposed to pemetrexed (2 h) in combination with different radiation doses given 1 h before pemetrexed washout (all cell lines) or at different points of time before or after pemetrexed addition (Widr). Survival curves were analyzed according to the linear-quadratic (LQ) model, and mean inactivation doses (MID) and radiation enhancement ratios were calculated from the survival curve parameters. Cell-cycle progression of serum-stimulated and pemetrexed- or mock-treated Widr cells was monitored by flow cytometry.

Results: Radiosensitization was found for all cell lines at moderately toxic pemetrexed exposures (0.05-0.3 microg/ml [106-636 nM]), but this was cell-type dependent and was most pronounced at roughly isotoxic concentrations, for the least pemetrexed-sensitive Widr cells. Enhancement ratios ranged from about 1.2 (MCF-7 and Hela) to 1.8 (Widr), with a tendency to increase with pemetrexed concentration. Little, if any, change of radiosensitization was observed (Widr) when the time of irradiation was varied from 4 h before to 10 h after the beginning of pemetrexed treatment. Cell-cycle progression of serum-stimulated Widr cells was only marginally affected by pemetrexed.

Conclusions: Pemetrexed enhances radiation-induced cell inactivation at moderately toxic exposures and over many hours after drug removal. This effect is not due to disturbed cell-cycle progression, but likely involves an interaction of pemetrexed with long-lived (>4 h) cellular radiation damage and needs to be considered when introducing a combined clinical application.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Cell Cycle / drug effects
  • Cell Cycle / radiation effects
  • Cell Survival
  • Combined Modality Therapy
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / pharmacology*
  • Folic Acid Antagonists / pharmacology*
  • Glutamates / pharmacology*
  • Guanine / analogs & derivatives
  • Guanine / pharmacology*
  • Humans
  • Pemetrexed
  • Tumor Cells, Cultured / drug effects*
  • Tumor Cells, Cultured / radiation effects*

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Folic Acid Antagonists
  • Glutamates
  • Pemetrexed
  • Guanine