Toll-like receptor 2 (TLR2) has been recognized to mediate cell signaling in response to peptidoglycan (PGN), a major cell wall component of Gram-positive bacteria. The mechanism by which TLR2 recognizes PGN is unknown. It is not even clear whether TLR2 directly binds to PGN. In this study, we generated a soluble form of recombinant TLR2 (sTLR2) possessing only its putative extracellular domain by using the baculovirus expression system to examine the direct interaction between sTLR2 and PGN. sTLR2 bound avidly to insoluble PGN (iPGN) from Staphylococcus aureus coated onto microtiter wells in a concentration-dependent manner. In contrast, sTLR2 exhibited a very weak binding to lipopolysaccharide. iPGN cosedimented sTLR2 after the mixture of iPGN and sTLR2 had been incubated and centrifuged. sTLR2 partially attenuated the iPGN-induced NF-kappaB activation in TLR2-transfected HEK 293 cells and the iPGN-induced IL-8 secretion in U937 cells. One of anti-human TLR2 monoclonal antibodies, which blocked iPGN-induced NF-kappaB activation in TLR2-transfected cells, inhibited the binding of sTLR2 to iPGN. In addition, we found that sCD14 interacted with sTLR2 and increased the binding of sTLR2 to iPGN. From these results, we conclude that the extracellular TLR2 domain directly binds to PGN.