Tissue-specific gene expression is mediated largely by transcription factors, and a master regulatory gene is thus a potential marker of cellular lineage. Using normal fetal through adult pulmonary tissues and 64 consecutive lung adenocarcinomas, we examined the expression of thyroid transcription factor (TTF-1), which plays a crucial role in normal lung function and morphogenesis. TTF-1 was expressed consistently throughout the life stages and uniformly in the terminal respiratory unit, which is comprised of peripheral airway cells and small-sized bronchioles. Furthermore, the expression was maintained in 72% of adenocarcinomas that exhibited high correlation with surfactant apoprotein (p <0.001) and morphologic resemblance to terminal respiratory unit cells (p <0.001). The staining pattern was also uniform in the adenocarcinomas despite histologic and microenvironmental diversity in individual tumors and their metastatic foci. This consistency and uniformity, therefore, suggested that TTF-1 expression could be used as a lineage marker of terminal respiratory unit. We also identified interesting distinctions between TTF-1-positive and -negative adenocarcinomas based on their clinicopathologic features and expression of various cancer-associated genes. TTF-1-positive adenocarcinomas had statistically significant prevalence of female (p <0.01), nonsmoker (p <0.05), negative p53 staining (p <0.01), less frequent RB loss (p <0.05), and preserved expression of p27 (p <0.01). The results supported the TTF-1 lineage marker and suggested that molecular pathogenesis may in part be characterized by cellular lineage.