Testosterone metabolism in the estuarine mysid neomysis integer (Crustacea; Mysidacea): identification of testosterone metabolites and endogenous vertebrate-type steroids

Gen Comp Endocrinol. 2002 Apr;126(2):190-9. doi: 10.1006/gcen.2002.7793.

Abstract

Testosterone metabolism by Neomysis integer (Crustacea; Mysidacea) was assessed to obtain initial data on its metabolic capacity. N. integer were exposed to both testosterone and [(14)C]testosterone. Identification of testosterone metabolites and endogenous steroids was performed using thin-layer chromatography and liquid chromatography with multiple mass spectrometry. Endogenous production of testosterone in mysids was detected for the first time. N. integer were exposed to testosterone and metabolized administered testosterone extensively. At least 11 polar testosterone metabolites (R(f,metabolite) < R(f,testosterone)), androstenedione, dihydrotestosterone, and testosterone were produced in vivo by N. integer. A sex-specific testosterone metabolism was also observed, although this observation requires further confirmation. The anabolic steroid beta-boldenone was also identified for the first time in invertebrates. The metabolic pathway leading to the formation of beta-boldenone remains unknown, since the steroidal precursor androstadienedione could not be detected. These results reveal interesting similarities in enzyme systems in invertebrate and vertebrate species. Alterations in steroid hormone metabolism may be used as a new biomarker for the effects of endocrine disruptors in invertebrates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anabolic Agents / analysis
  • Animals
  • Autoradiography
  • Carbon Radioisotopes
  • Chromatography, Thin Layer
  • Crustacea / metabolism*
  • Female
  • Male
  • Steroids / analysis*
  • Testosterone / metabolism*

Substances

  • Anabolic Agents
  • Carbon Radioisotopes
  • Steroids
  • Testosterone