The immunomodulatory effect of hyperbaric oxygen, involving altered cytokine release by macrophages, is well described. Importantly, however, it is not known what the relative contribution is of the hyperbaric environment of the cells vs. increased oxygen tension on these hyperbaric oxygen-dependent effects. We compared, therefore, cytokine release by murine macrophages under hyperbaric oxygen, hyperpressure of normal air and normobaric conditions. We observed that hyperbaric oxygen enhanced cytokine release of both unstimulated as well as lipopolysaccharide (LPS)-challenged macrophages. Hyperpressure of normal air, however, enhanced LPS-induced cytokine production but did not elicit cytokine release in unstimulated macrophages. To further investigate the molecular details underlying the effects of hyperbaric oxygen, we investigated the effect of the p42/p44 mitogen-activated protein (MAP) kinase inhibitor PD98059 and the p38 MAP kinase inhibitor SB203580. Neither inhibitor, however, had a significant effect on the modulatory effects of hyperbaric oxygen on cytokine release. We concluded that the immunomodulatory effect of hyperbaric oxygen contains a component for which hyperpressure is sufficient and a component that apart from hyperpressure also requires hyperoxygenation.