Background: Personal exposure to air pollutants and ambient air measurements are poorly correlated in the short term. Nevertheless, air quality surveillance data are often used to characterize exposure in epidemiological studies. This work explores a method to derive exposure estimates for a population of children, through appropriate usage of surveillance data that allows for heterogeneity of life environments.
Methods: Personal exposure (PE) to PM2.5 and NO(2) of 66 to 184 children was measured in 4 French metropolitan areas (Grenoble, Nice, Toulouse and Paris). The proposed approach provides an estimate of a "translator parameter". This method was applied to subgroups of children who differed in terms of daily time spent in areas more or less influenced by traffic emissions.
Results: Ambient air concentrations of NO(2) overestimated personal exposures, on average, but children whose life environments are more influenced by traffic exhausts exhibit, on average, greater PE values; as far as particles are concerned, air quality surveillance and PE values are closer. Hence, translation parameters differ according to pollutants, cities and populations.
Conclusions: These results suggest that ambient air monitors can be used to assess exposure of urban populations living in areas with variable traffic intensities. However, usage of these air quality surveillance data should allow for population and pollutant characteristics.