Individual, strongly electroluminescent Ag(n) molecules (n = 2 approximately 8 atoms) have been electrically written within otherwise nonemissive silver oxide films. Exhibiting characteristic single-molecule behavior, these individual room-temperature molecules exhibit extreme electroluminescence enhancements (>10(4) vs. bulk and dc excitation on a per molecule basis) when excited with specific ac frequencies. Occurring through field extraction of electrons with subsequent reinjection and radiative recombination, single-molecule electroluminescence is enhanced by a general mechanism that avoids slow bulk material response. Thus, while we detail strong electroluminescence from single, highly fluorescent Ag(n) molecules, this mechanism also yields strong ac-excited electroluminescence from similarly prepared, but otherwise nonemissive, individual Cu nanoclusters.