We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence.
Availability: The trained neural network is available for academic use by contacting steen@cbs.dtu.dk