Among the eight genes (YlALK1-YlALK8) encoding P450 cytochromes of the CYP52 family of the n-alkane-assimilating yeast Yarrowia lipolytica, Y1ALK1 is most highly induced by n-alkanes with short hydrocarbon chains, such as n-decane, and involved in the initial hydroxylation of n-alkane. To determine the factors regulating YlALK1 expression, we isolated an n-decane assimilation-deficient mutant, B0-6-1, whose YlALK1 expression level was lower than that of the wild-type. By complementation of the mutation of B0-6-1, we cloned a gene having an open reading frame of 1062 bp. The putative gene product is a protein of 354 amino acids and has significant homology to Pex10ps of other organisms. We named this gene YlPEX10. YlPex10p has a C(3)HC(4) ring finger motif common among Pex10ps in its C-terminal region. This motif was also essential for the function of YlPex10p. Both B0-6-1 and a null mutant of YlPEX10 failed to form peroxisome and showed low-level transcription of YlALK1 after the change of carbon source to n-decane. Furthermore, YlPEX5 and YlPEX6 disruptants also showed low-level transcription of YlALK1 like the YlPEX10 disruptant and B0-6-1 mutant. We propose that in this organism peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1.