Non-phase-locked beta oscillatory changes during passive movements were studied in six healthy volunteers, and compared with those observed in a similar group during ballistic movements. Passive movements consisted of brisk wrist extensions done with the help of a pulley system. Changes in the beta band were determined by means of wavelet and Gabor transforms, and compared statistically with a pre-movement period. In this paradigm, a marked beta energy loss (event-related desynchronization, ERD) was present after the beginning of the movement, followed by a beta energy increase (event-related synchronization, ERS). The ERD/ERS was similar to that observed during ballistic movements, but without pre-movement components. Although both changes were maximal in the contralateral central electrode, the beta ERD showed a more bilateral topography. These findings suggest that afferent proprioceptive inputs may play a role in the final part of the beta ERD observed during voluntary movements.