The development of an acyclic chloride anion template in which the chloride anion is coordinatively unsaturated and available for subsequent complexation to various hydrogen bond donating components is described. This template orients a neutral hydrogen bond donating ligand and a pyridinium cation orthogonally to one another. Incorporation of second-sphere interactions between the ligand and the pyridinium cation improved the efficacy of the chloride template. These results were exploited in the construction of a chloride anion-templated [2]rotaxane which, after anion template removal, was studied with regards to its anion recognition properties. Encirclement of the neutral macrocycle around the dumbbell-shaped pyridinium cation in the [2]rotaxane produced a dramatic increase in its selectivity for chloride anions as compared to the noninterlocked cation. This is interpreted as a function of the anion template used to create the [2]rotaxane superstructure.