The perceptions of lightness or brightness elicited by a visual target are linked to its luminance by a nonlinear function that varies according to the physical characteristics of the target and the background on which it is presented. Although no generally accepted explanation of this scaling relationship exists, it has long been considered a byproduct of low- or mid-level visual processing. Here we examine the possibility that brightness scaling is actually the signature of a biological strategy for dealing with inevitably ambiguous visual stimuli, in which percepts of lightness/brightness are determined by the probabilistic relationship between luminances in the image plane and their possible real-world sources.