In a recent field study on dune recharge, bacteriophages MS2 and PRD1 were found to be removed 3 log10 over the first 2.4 m and only 5 log10 over the next 27 m. To understand the causes of this nonlinear removal, column experiments were carried out under conditions similar to the field: same recharge water, temperature (5 +/- 3 degrees C) and pore water velocity (1.5 m day(-1)). Soil samples were taken along a streamline between the recharge canal and the first monitoring well. Bacteriophage phiX174 was included for comparison. The high initial removal in the field was found not to be due to heterogeneity of phage suspensions but to soil heterogeneity. Phage removal rates correlated strongly positively with soil organic carbon content, and relatively strongly positively with silt content and the presence of ferric oxyhydroxides. Soil organic carbon content, silt content and the presence of ferric oxyhydroxides were found to decrease exponentially with travel distance. Removal rates of phiX174 were found to be 3-10 times higher than those of MS2 and PRD1 due to the lower electrostatic repulsion that the less negatively charged phiX174 experiences. It is suggested that the high initial removal in the field is due to the presence of favorable sites for attachment formed by ferric oxyhydroxides that decrease exponentially with travel distance. Similar removal rates may be found at both laboratory and field scale. However, due to local variations at field scale detailed knowledge on soil heterogeneity may be needed to enable a reliable prediction of removal.