Translation initiation factor 3 (eIF3) of Saccharo myces cerevisiae forms a multifactor complex (MFC) with eIFs 1, 2, 5 and Met-tRNA(i)(Met). We previously constructed a subunit interaction model for the MFC. Here we incorporated affinity tags into the three largest eIF3 subunits (eIF3a/TIF32, eIF3b/PRT1 and eIF3c/NIP1) and deleted predicted binding domains in each tagged protein. By characterizing the mutant subcomplexes, we confirmed all key predictions of our model and uncovered new interactions of NIP1 with PRT1 and of TIF32 with eIF1. In addition to the contact between eIF2 and the N-terminal domain (NTD) of NIP1 bridged by eIF5, the C-terminal domain (CTD) of TIF32 binds eIF2 directly and is required for eIF2-eIF3 association in vivo. Overexpressing a CTD-less form of TIF32 exacerbated the initiation defect of an eIF5 mutation that weakens the NIP1-eIF5-eIF2 connection. Thus, the two independent eIF2-eIF3 contacts have additive effects on translation in vivo. Overexpressing the NIP1-NTD sequestered eIF1-eIF5-eIF2 in a defective subcomplex that derepressed GCN4 translation, providing the first in vivo evidence that association with eIF3 promotes binding of eIF2 and Met-tRNA(i)(Met) to 40S ribosomes.